
PUBLIC

Henrik Plate (SAP Security Research)

January 14th, 2022

Manage Log4Shell and other
open-source vulnerabilities
with Eclipse Steady

2© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

Log4Shell

▪ Intro

▪ Step-by-step

▪ Demo

▪ Take-aways

Eclipse Steady

▪ Overview

▪ Approaches

▪ Architecture

▪ Demo

▪ Pros & Cons

Agenda

Log4Shell
Log4j and CVE-2021-44228

4© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

▪ Apache Log4j is a widely used logging library in Java

▪ CVE-2021-44228 allows for remote code execution (RCE)

▪ Low attack complexity, no privileges required, complete compromise → CVSS 10

▪ Attack succeeds if strings with JNDI lookups ${jndi:…} are logged by apps depending on

vulnerable versions of Log4j (2.0-beta9 to 2.14.1)

▪ Configuration settings can limit exposure and increase complexity (but not mitigate completely)

▪ Three other vulnerabilities have been found afterwards (CVE-2021-45046, 45105 and 44832)

▪ Latest non-vulnerable release is 2.17.1

Log4Shell

Introduction to CVE-2021-44228

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

5© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

Log4Shell

Step-by-step

https://www.govcert.ch/blog/zero-day-exploit-targeting-popular-java-library-log4j/

Needs combination with

other safeguards

6© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

Log4Shell

Demo

java -cp lib/log4j-api-2.14.0.jar:lib/log4j-core-2.14.0.jar:target/classes Main '${jndi:ldap://127.0.0.1:1389/a}'

java –cp lib/log4j-api-2.17.1.jar:lib/log4j-core-2.17.1.jar:target/classes Main '${jndi:ldap://127.0.0.1:1389/a}'

java -cp lib/bar-1.0.0-SNAPSHOT.jar:lib/log4j-api-2.17.1.jar:lib/log4j-core-2.17.1.jar:target/classes \

Main '${jndi:ldap://127.0.0.1:1389/a}'

7© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

▪ Re-bundles are Java archives containing code of other open-source projects

▪ Example use-cases
– Self-contained, executable JARs (Uber-JARs)

– OSGI bundles

– Forks

▪ Different variations:
– Identical bytecode, re-compiled or re-packaged

– With or without meta-data (META-INF/maven/…/pom.xml)

▪ Example: 3233 artifacts on Maven Central contain the problematic Log4j class JndiLookup

▪ Problems:
– If vulnerable re-bundles appear before log4j-core 2.17.1 in the Java runtime classpath, the vulnerable

classes are loaded from the re-bundle

– Open-source vulnerability scanners struggle to identify re-bundles (depending on the variations) [1]

Log4Shell

Re-bundles

[1] Dann, Andreas et al.: Identifying Challenges for OSS Vulnerability Scanners (IEEE TSE 2021)

https://search.maven.org/search?q=fc:org.apache.logging.log4j.core.lookup.JndiLookup
https://sse.cs.tu-dortmund.de/storages/sse-cs/r/Publications/Preprints/dphpb21-tse-achilles.pdf

8© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

▪ The attack complexity is very low

▪ Configuration settings can limit exposure and increase
complexity (but not mitigate completely)

▪ Not only user-facing apps are affected
(but any app that receives and logs untrusted input)

▪ Re-bundles of Log4j can also result in vulnerable apps

To fix

▪ Update to non-vulnerable versions of Log4j (and re-
bundles) or remove JndiLookup.class

▪ Additionally, specify secure defaults in case vulnerable re-
bundles are missed (to reduce exposure)

Log4Shell

Take-aways

https://msrc-blog.microsoft.com/2021/12/11/
microsofts-response-to-cve-2021-44228-apache-log4j2/

Eclipse Steady
https://github.com/eclipse/steady

partially funded by EU project

10© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

▪ Check for new vulnerability disclosures

(hopefully automated)

▪ Dismiss false-positives, assess true-positives

(keep fingers crossed for false-negatives)

▪ Mitigate
(from piece-of-cake to very expensive)

▪ Release and install patch

(cloud ☺ on-premise  devices )

After Heartbleed and Equifax

Entering the Hamster Wheel

12© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

Metadata-based

▪ Primarily rely on package names and versions,

package digests, CPEs, etc.

▪ Example: OWASP Dependency Check

(light-weight, maps against CVE/NVD)

Open-Source Vulnerability Detection

Two Approaches

Ref erences:

[1] Ponta, S., et al.: Bey ond Metadata: Code-Centric and Usage-Based Analy sis of Known Vulnerabilities in Open-Source Sof tware (2018)

Code-based

▪ Detect the presence of code (no matter the package)

▪ Example: Eclipse Steady (heavy-weight, requires fix-commits)

▪ Supports impact assessments (static and dynamic analyses),

esp. important for later lifecycle phases and non-cloud

▪ Supports update metrics to avoid regressions [1]

▪ Based on Project KB, which contains fix commits for given

vulnerabilities
Fig. 1. Fix-commit for CVE-2020-10683

Fig. 2. Static and dynamic paths to

vulnerable method

https://owasp.org/www-project-dependency-check/
https://ieeexplore.ieee.org/abstract/document/8530051
https://github.com/eclipse/steady
https://github.com/sap/project-kb
https://github.com/dom4j/dom4j/commit/a822852

13© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

Your organization

▪ Public dataset contains code-level vulnerability information → Project KB on GitHub

▪ Always-on Docker Compose app stores analysis results → Docker Hub

▪ Plugins or CLI scan Java apps in CI/CD pipelines → Maven Central

Architecture

Roles

Steady

Docker App

CI/CD jobs

Steady

Plugin/CLI
Project KB

Operate, Consult, Report
Consume results

Trigger app analysis

Devs

Central
Security/Tooling

https://github.com/sap/project-kb
https://hub.docker.com/search?q=eclipse%2Fsteady&type=image
https://search.maven.org/search?q=g:org.eclipse.steady

14© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

1) Shell scripts to setup and start the Docker Compose app

(vulnerabilities from Project KB are imported after 1st startup…)

2) Maven plugin to scan a sample application

3) Web frontend to browse scan results

4) REST API to export scan results

Setup → Scan → Browse Results → Central Report

Demo

15© 2022 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

The bigger the organization, the more Java projects, esp. non-cloud, and internal re-use

components, and with central security/tooling teams: Eclipse Steady

Eclipse Steady

Pros & Cons

Steady Pros

Scans can be separated into workspaces

w/ configurable properties

New vulns. do not require app re-scans

Central reporting

Vulns. of internal components can be

covered

Fewer FPs/FNs and additional features

(due to code-centric analysis)

Steady Cons (compared to OWASP DC)

Depends on code-level vuln. info

(more than just NVD → extra community effort)

More complex setup (e.g. private cloud)

Focus on Java

Thank you.

Henrik.Plate@sap.com

https://www.linkedin.com/in/HenrikPlate/

https://twitter.com/HenrikPlate

mailto:henrik.plate@sap.com
https://www.linkedin.com/in/HenrikPlate/
https://twitter.com/HenrikPlate

